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Abstract

We classify k-instanton bundles on P3
C which are homogeneous for the group SL(2), acting linearly on P3 with an open orbit.

Besides the classical special instantons, we find isolated examples for SL(2) acting by the representation of binary cubics. We
show that these examples are unique and that they exist only for k = a(a − 1)/2, for some a ≥ 2. We also compute their minimal
free resolution in terms of homogeneous equivariant matrices.
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1. Introduction and preliminaries

A k-instanton bundle on the complex projective space P3
= P(V ) is a rank-2 stable bundle E with c1(E ) = 0,

c2(E ) = k, H1(P3,E (−2)) = 0; see [8,2]. According to the ADHM correspondence introduced in [1], instantons
satisfying a reality condition can be seen in terms of self-dual Yang–Mills Sp(1)-connections on S4. The moduli
space of k-instantons will be denoted by MI(k). It is conjecturally smooth and irreducible, and proved to be so up to
k = 5; see [11,3].

Assume now that a simple complex Lie group G acts on V via a representation ρ : G → SL(V ), and consider
the G-action induced on MI(k) by pull-back. We will be interested in the fixed points in MI(k) for this action, namely
G-homogeneous instanton bundles.

We suppose that the group G acts on the space P3
= P(V ) with an open orbit, i.e. P3 is a quasi-homogeneous

G-space. Then either G acts transitively (and in this case, up to a finite cover, G is isomorphic to SL(4) or to Sp(2)),
or G must be isomorphic to SL(2) up to a finite cover.

For SL(4), no homogeneous instanton bundle exists. In the case G = Sp(2), the bundle E must be isomorphic to
a null-correlation bundle. So we assume G ∼= SL(2), and the action is given by a decomposition of V into SL(2)-
modules. We denote by U the standard representation of SL(2) and by Ub the module SymbU . Then the decomposition
of V must be one of the following types:
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(A) the special action: V ∼= U ⊕ U ;
(B) the representation of binary cubics: V ∼= U3.

According to the above cases, we prove here the following result.

Theorem. Let SL(2) act linearly with an open orbit on P3
= P(V ) and let E be an SL(2)-homogeneous instanton

bundle on P(V ).
(A) If the SL(2)-module V is isomorphic to U ⊕ U, then E is a special instanton.
(B) If the SL(2)-module V is isomorphic to U3, then c2(E ) =

(
d+1

2

)
for some d ≥ 1, and the bundle E is unique up

to isomorphism.

Moreover, for any integer d ≥ 1 there exists a unique minimal equivariant exact sequence of the form

0 → OP3(−2d − 1) → U3d ⊗ OP3(−d − 1) → U3d+1 ⊗ OP3(−d) → E → 0,

which defines the unique SL(2)-homogeneous instanton E of case (B), with c2(E ) =

(
d+1

2

)
.

The paper consists of two parts. In the first one we briefly consider the case (A), where we reduce to the set-up
already studied in the literature, namely the special instantons. In the second part, we study the case (B), and we
provide new examples of homogeneous instantons. These bundles are first studied via the classical monad-theoretic
approach, then constructed in a simpler way via their minimal graded free equivariant resolution. We prove also that
these examples are unique.

We will work on a complex projective variety Y , embedded by OY (1). Given a sheaf F on Y we write F (t) for
F ⊗ OY (1)⊗t . Sometimes we will deal with products Y = Y1 × · · · × Yr , embedded by OY (1, . . . , 1), with obvious
notation.

We say that a group G acts linearly on a projective variety Y ⊂ P(V ) if G can be identified with a subgroup of
GL(V ) that takes Y to Y . If Y is a product of projective spaces, then G acts separately if it acts linearly on Y under
the Segre embedding. A sheaf F on Y is called G-homogeneous if we have F ∼= φ∗(F ), for all transformations
G 3 φ : Y → Y .

Given a vector bundle E on P3, we will set I = H1(P3,E (−1)), W = H1(P3,E ⊗ Ω). An instanton bundle E on
P3 is a stable rank-2 bundle with c1(E ) = 0, c2(E ) = k, which is isomorphic to the cohomology of a monad of the
following form:

I ∗
⊗ OP3(−1)

J A>

−→ W ⊗ OP3
A

−→ I ⊗ OP3(1),

where dim(I ) = k, dim(W ) = 2k + 2, and J : W ∗
→ W is a skew-symmetric duality. This is equivalent to the

definition that we have given before; see for instance [2,12].
According to [5], the moduli space of instanton bundles MI(k) can be defined as the GIT quotient:

{A ∈ HomP3(W ⊗ OP3 , I ⊗ OP3(1))◦|AJ A>
= 0}//Sp(W )× GL(I ),

where HomP3(W ⊗ OP3 , I ⊗ OP3(1))◦ is the open complement in HomP3(W ⊗ OP3 , I ⊗ OP3(1)) of a hypersurface
V , and the group Sp(W ) × GL(I ) acts via the standard left and right multiplication. The homogeneous form
corresponding to V is Sp(W )× SL(I )× SL(V )-invariant, and associates with A ∈ HomP3(W ⊗ OP3 , I ⊗ OP3(1))
the determinant of the induced map W ⊗ I → Sym2 I ⊗ V .

2. Special action

We call special action the SL(2)-action on V by V ∼= U ⊕ U . Indeed, SL(2) acts on V this way if E is a special
instanton bundle; see [4]. Special instantons were first studied in [10], and have been extensively investigated ever
since, see e.g. [14,13], so we will say no more about them here.

However, an SL(2)-homogeneous instanton bundle for the special action need not a priori be a special instanton.
We show here that this is indeed the case. In fact setting k = c2(E ), by [4, Proposition 4.12], it suffices to show the
isomorphisms of representations:

I ∼= U k
0 , W ∼= U k+1. (2.1)
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We need the following lemma, which is essentially due to Vallès, see [15]. We sketch a proof for the reader’s
convenience.

Lemma 2.1 (Vallès). Let F be a vector bundle with c1(F ) = 0, defined on Q = P1
× P1, and let SL(2) act

separately on Q, transitively on the second factor. Assume that F is SL(2)-equivariant. Then F is an extension of
line bundles.

Proof. Let p : Q → P1 be the SL(2)-equivariant projection onto the second factor and consider G = p∗(F ). The
vector bundle G is SL(2)-homogeneous for the induced action on P1, and it decomposes as the direct sum of two line
bundles by Grothendieck’s theorem. Given an integer a define the subset

Za = {y ∈ P1
| F|P1×{y} ' OP1(a)⊕ OP1(−a)},

and take a as the minimal nonnegative integer a such that Za is nonempty. Of course Za is open in P1. However Za
must contain an orbit for the action of SL(2); hence it is all of P1 by our assumption. Therefore p∗(F (−a,−a)) is
isomorphic to a line bundle OP1(b) and we have a natural epimorphism ψ : F ∗(a, a) → OQ(0,−b). Indeed, for
each y, ψ restricts over P1

× {y} to the projection onto the second factor: F ∗(a)|P1×{y}
∼= OP1(2a) ⊕ OP1 → OP1 .

So our claim is proved. �

Lemma 2.2. Let F be as above and assume H0(Q,F ) = 0.

(i) If SL(2) acts transitively on the first factor, then we have an exact sequence:

0 → OQ(a,−a − 1) → F → OQ(−a, a + 1) → 0, for some a ∈ Z, (2.2)

and the bundle F is unique up to isomorphism.
(ii) If SL(2) acts trivially on the first factor, then we have an exact sequence:

0 → OQ(a,−1) → F → OQ(−a, 1) → 0, for some a > 0. (2.3)

Proof. We know by the previous lemma that F is an extension of line bundles of the form

0 → OQ(a, b) → F → OQ(−a,−b) → 0, for some a, b ∈ Z.

Since H0(Q,F ) = 0, this exact sequence must be nontrivial, so the group H1(Q,OQ(2a, 2b)) must be nonzero.
More than that, it must contain a nonzero element which is invariant for SL(2). We have two possibilities: either
a ≥ 0, b ≤ −1 or a ≤ −1, b ≥ 0. Take the first case (the other one is analogous). According to the alternatives (i) or
(ii), the SL(2) module H1(Q,OQ(2a, 2b)) is isomorphic to U2a ⊗ U−2−2b or to C2a+1

⊗ U−2−2b. In the former case
this module contains a nonzero invariant element if and only if b = a − 1, and in this case the extension is unique.
In the latter case we have b = −1, and we get a > 0 by H0(Q,F ) = 0. Notice that there is a (2a + 1)-dimensional
vector space of invariant elements in this case. �

Lemma 2.3. Let E be an SL(2)-homogeneous vector bundle on P(U ⊕ U ). Then (2.1) takes place.

Proof. Let us fix isomorphisms V ∼= U ⊕ U ∼= U ⊗ U ′, where U ′ is a two-dimensional vector space where SL(2)
acts trivially. Then P(U ⊕ U ) contains an invariant smooth quadric Q ∼= P(U )× P(U ′). Denote by F the restriction
of E to Q, and observe that F is SL(2)-homogeneous. We have the exact sequence

0 → E (−3) → E (−1) → F (−1) → 0. (2.4)

The vanishing H1(P3,E (−2)) = 0 implies H0(Q,F ) = 0. Thus we can apply Lemma 2.2, part (2.3), to F . It
follows at once that

H1(Q,F (−1)) ∼= U a
0 , for some a.

On the other hand by (2.4) we get I ⊕ I ∗ ∼= U 2a
0 , and so I ∼= U a

0 , a = k. To read the structure of W we use the
isomorphism provided by [5]. This gives

W ⊗ I ∼= Sym2 I ⊗ V ∼= U k(k+1).

We obtain W ∼= U k+1. �
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3. Action by binary cubics

Here we consider the action of SL(2) over the vector space V by identifying V with the space U3 of binary cubics,
over the two-dimensional vector space U generated by x and y. We let x0, x1, x2, x3 have weights of, respectively, 3,
1, −1, −3 for the action of sl(2). In other words we think of the identities

x0 = x3, x1 = x2y, x2 = xy2, x3 = y3.

The space P(U3) is decomposed into three orbits of dimensions 1, 2, 3. The one-dimensional orbit is a twisted
cubic Γ , which sits as the singular locus of the quartic surface Y4 defined by the discriminant equation F4:

F4 = x2
0 x2

3 − 4x0x3
2 + 6x0x1x2x3 − 4x3

1 x3 + x2
1 x2

2 .

In turn the ideal of Γ is given by the Jacobian of F4. Though rather trivial, the following lemma is often useful.

Lemma 3.1. Let ψ : A → B be an equivariant morphism of SL(2)-homogeneous vector bundles on P(U3).

– If rk(ψ)p0 = r for some p0 ∈ Γ , then rk(ψ) ≥ r everywhere.
– If rk(ψ)p1 = r for some p1 ∈ P(U3) \ Y4, then rk(ψ) ≤ r everywhere.

Proof. Consider the subsets

{q ∈ P(U3) | rk(ψ)q ≤ r − 1},

{q ∈ P(U3) | rk(ψ)q > r}.

The first is a closed SL(2)-invariant subset of P(U3). Thus it contains all of Γ as soon as it is nonempty. But it does
not contain p0, so it must be empty. The second is an open SL(2)-orbit, so it should contain all of P(U3) \ Y4. But it
does not contain p1, so it must be empty. �

3.1. The SL(2)-structure of I and W

There is a natural equivariant 6 : 1 branched cover P(U )×3
→ P(U3), associated with the embedding U3 ↪→ U⊗3.

This covering factorizes as P(U )×3 2:1
−→ P(U ) × P(U2)

3:1
−→ P(U3). In the following lemma we establish some

properties of these maps.

Lemma 3.2. We have a commutative diagram of SL(2)-equivariant maps:

P(U ) �
� α //

∼=

��

P(U )× P(U )

��

� � β // P(U )× P(U2)

3:1 f
��

� � γ // P(U3 ⊕ U1)

π
vvn n n n n n

Γ // Y4 // P(U3),

where π is defined by U3 ↪→ U3 ⊕ U1, Γ ↪→ Y4 ↪→ P(U3) are the natural embeddings, α = ϕ|OP1 (2)|,
β = ϕ|OP1×P1 (1,2)|, γ = ϕ|OP1×P2 (1,1)|. We have the equivariant isomorphisms

f∗(OP1×P2) ∼= OP3 ⊕ U ⊗ OP3(−1), (3.1)

f∗(OP1×P2(−2, 0)) ∼= ΩP3 , (3.2)

f∗(OP1×P2(0,−1)) ∼= U ⊗ OP3(−1)⊕ OP3(−2), (3.3)

f∗(OP1×P2(0,−2)) ∼= U2 ⊗ OP3(−2). (3.4)

Proof. Denote by h1, h2, h the very ample tautological divisors respectively on P(U ), P(U2), P(U3). It is clear that
all the maps in the above diagram are equivariant. The map f is evidently a triple cover, and we have f ∗(OP3(1)) ∼=

OP1×P2(1, 1). The ramification divisor of f has degree 4, since (2h1 + h2) · (h1 + h2)
2

= 4. It corresponds to the
unique invariant element of H0(P(U )× P(U2),OP1×P2(2, 1)). We have f∗(h1) = h, f∗(h2) = 2h. The image of β is
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the tangential variety of Im(β ◦ α). It corresponds to the unique invariant element of H0(P(U ) × P(U2),O(0, 2)); it
also has degree 4.

On P(U ) we have α∗β∗ f ∗(OP3(1)) ∼= α∗OP1×P1(1, 2) ∼= OP1(3), so the rational curves Γ and f (β(α(P(U ))))
are identified. This identification obviously extends to the tangential divisors so the diagram commutes. Notice that
the map P(U )× P(U ) → Y4 is nothing but the embedded resolution of singularities of Y4.

Observe that f∗(OP1×P2) is a rank-3 vector bundle. This bundle splits by the projection formula and Horrocks’s
criterion. Of course it contains OP2 as a direct summand. We have SL(2)-isomorphisms:

U3 ⊕ U ∼= H0(P(U )× P(U2),OP1×P2(1, 1)) ∼= H0(P3, f∗(OP1×P2)(1)).

We conclude that the remaining summand of f∗(OP1×P2) is isomorphic to U (−1). One treats similarly
f∗(OP1×P2(0,−1)) and f∗(OP1×P2(0,−2)). For f∗(OP1×P2(−2, 0)), notice that H1(P3, f∗(OP1×P2(−2, 0))(t)) = 0
for t 6= 0, h1(P3, f∗(OP1×P2(−2, 0))) = 1, which implies f∗(OP1×P2(−2, 0)) ∼= Ω . We have thus proved (3.1)–
(3.4). �

Setting Q = Im(β), we can write the equivariant exact sequence

0 → OP1×P2(0,−2) → OP1×P2 → OQ → 0. (3.5)

Lemma 3.3. Let E be an SL(2)-equivariant instanton bundle on P(U3). Then we have isomorphisms of SL(2)-
modules:

I ∼= ∧
2 Ua W ∼= U2a+1 ⊕ Ua−2 ⊗ Ua−1,

for some a ≥ 1; in particular we have c2(E ) =
( a

2

)
.

Proof. Recall the map f of Lemma 3.2 and set K = f ∗(E ). The bundle K is clearly SL(2)-homogeneous, and
notice that it restricts to a homogeneous bundle F on the invariant divisor Q. Therefore F satisfies the hypothesis of
Lemma 2.2, part (i), indeed the action is transitive on both factors of Q ∼= P(U )× P(U ).

Using the projection formula, (3.1) and the condition H2(P3,E (−2)) = 0, we can write the equivariant
isomorphisms:

I = H1(P3,E (−1))⊕ H1(P3,E ⊗ U (−2))
∼= H1(P3,E ⊗ f∗(OP1×P2(−1,−1)))
∼= H1(P(U )× P(U2),K (−1,−1)).

Tensoring with K (−1,−1) the exact sequence (3.5) we obtain

0 → K (−1,−3) → K (−1,−1) → F (−1,−2) → 0.

Making use of (3.4) and Serre duality, we get the equivariant isomorphism:

H2(P(U )× P(U2),K (−1,−3)) ∼= I ∗
⊗ U2.

The computation of H1(P3,F (−1,−2)) is carried out using (2.2), and yields the exact sequence

0 → I → Ua−1 ⊗ Ua+1 ⊕ Ua−1 ⊗ Ua−1 → I ∗
⊗ U2 → 0,

with a ≥ 1. It follows that the decomposition of I contains the summand U2a−2 with multiplicity 1. Ordering the
summands of this decomposition by decreasing weight, the next term must then be U2a−6 (for a ≥ 3) and so forth,
one proves inductively that I is isomorphic to ∧

2 Ua .
Let us consider W . Again by (3.2) we have the isomorphism

W = H1(P3,E ⊗ f∗(OP1×P2(−2, 0))) ∼= H1(P(U )× P(U2),K (−2, 0)).

Tensoring (3.5) by K (−2, 0), substituting the expressions of I and of H1(P(U ) × P(U2),F (−2, 0)), and using
our cohomology vanishing, we arrive at the equivariant exact sequence:

0 → W → Ua−1 ⊗ Ua−2 ⊕ Ua+1 ⊗ Ua → (∧2 Ua)⊗ U → 0.
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The rightmost term is isomorphic to Ua ⊗Ua−1. Notice that once we remove the summand U2a+1 from the middle
term, it becomes isomorphic to Ua ⊗ Ua−1 ⊕ Ua−1 ⊗ Ua−2. This proves our claim. �

3.2. Equivariant matrices

We will consider the standard basis of Ub defined by yk = xb−kyk , with the natural induced action of SL(2), or
equivalently of sl(2). As usual, the Lie algebra sl(2) will be generated by X,Y,H with [H,X] = 2X, [H,Y] = −2Y,
[X,Y] = H. This leads us to adopt the convention of Y acting on yk ∈ Ub by

Y · yk = (b − k)yk+1.

We extend this convention to the tensor algebra by linearity. This gives a uniform way of writing down the
coefficients of the sl(2)-action on tensor products and homomorphism spaces. In particular, denoting by yq (resp.
by z p) the basis vectors of Ub (resp. of Uc), the following formula gives the sl(2)-action on the maximal weight vector
w of the summand Ub+c−2s of Ub ⊗ Uc:

Y j (w) = Y · · · Y · Y︸ ︷︷ ︸
j

·w =

j+s∑
p=0

s∑
q=0

(−1)q
(

s
q

) (
b−q
p−q

) (
c−s+q
j−p+q

)
(

b+c−2s
j

) y j−p+s ⊗ z p.

For instance the generator of U4 ⊂ U3 ⊗ U3 with this convention is x2
0 x2

3 − 4x0x3
2 + 6x0x1x2x3 − 4x3

1 x3 + x2
1 x2

2 ,
the tangential quartic to the twisted cubic, which we have used before.

Remark 3.4. Given an integer b ≥ 3, there are only four integers c such that there exists an equivariant linear map
g : Ub → Uc ⊗OP3(1), namely c ∈ {b+3, b+1, b−1, b−3} and of course if b equals 0, 1 or 2 there are respectively
2, 3, 3 choices. Anyway the map g is unique up to a nonzero scalar. We will adopt the notation

f ++

b : Ub → Ub−3 ⊗ OP3(1), f +

b : Ub → Ub−1 ⊗ OP3(1),

f −

b : Ub → Ub+1 ⊗ OP3(1), f −−

b : Ub → Ub+3 ⊗ OP3(1).

According to our convention the expression of the map f ++ takes the form

( f ++

b )i, j =

(
3

j−i

) (
b−3
i−1

)
(

b
j−1

) x j−i . (3.6)

Similarly, for the remaining maps we have the expression

( f εb )i, j =

s∑
q=0

(−1)q
(

s
q

) (
3−q

j−i−q+s

) (
b+q+s−3
i+q−s−1

)
(

b
j−1

) x j−i+s, with

ε = + ⇒ s = 1,
ε = − ⇒ s = 2,
ε = −− ⇒ s = 3.

(3.7)

We will also need the expression of the unique (up to a scalar) equivariant duality Jb : Ub → Ub, which will be
skew-symmetric as soon as b is odd. This takes the form

(Jb)i, j =
(−1)i(

b
j−1

)δi,b− j+2, with δh,k =

{
1 if h = k,
0 if h 6= k. (3.8)

Looking back at Lemma 3.3, we can write down explicitly the form of the equivariant map defining an SL(2)-
homogeneous instanton bundle.



2152 D. Faenzi / Journal of Geometry and Physics 57 (2007) 2146–2157

Remark 3.5. Let A : W → I ⊗ OP3(1) be a matrix defining an SL(2)-homogeneous instanton bundle E on P(U3).
Then A takes the form

A =


g++

2a+1 g−

2a−3 g−−

2a−5 0
0 g++

2a−3 g+

2a−5 g−

2a−7 g−−

2a−9 0
0 0 g++

2a−7 g+

2a−9 g−

2a−11 g−−

2a−13 0

0
. . .

. . .
. . . 0

0 g++

5 g+

3 g−

1

 , (3.9)

for some even integer a, or

A =


g++

2a+1 g−

2a−3 g−−

2a−5 0
0 g++

2a−3 g+

2a−5 g−

2a−7 g−−

2a−9 0
0 0 g++

2a−7 g+

2a−9 g−

2a−11 g−−

2a−13 0

0
. . .

. . .
. . . g−−

1
0 0 g++

3 0

 , (3.10)

for some odd integer a, where the map gεb is of the form cεb · f εb , cεb lies in C, f εb is defined in Remark 3.4, and ε ranges
in {++,+,−,−−}.

Lemma 3.6. Let A be defined by (3.9) or (3.10). Then A has maximal rank everywhere if and only if c++

b 6= 0, for
each b.

Proof. Assume c++

b 6= 0, for each b. By Lemma 3.1, in order to prove that A has maximal rank on P(U3), it suffices
to check that it does so on the point p0 = (1 : 0 : 0 : 0) ∈ Γ . Let A0 be the evaluation of A at p0. By the expression
(3.6) for f ++ the j-th entry on the main diagonal of A0 takes the form

c++

b ·

(
b−3
j−1

)
(

b
j−1

) ,
which is nonzero as soon as b ≥ 4. On the other hand we always have b ≥ 3, while b = 3 implies j = 0. So this
coefficient never vanishes. Therefore A0 is upper triangular with nonvanishing terms on the main diagonal; hence it
has maximal rank.

Conversely, assume that a coefficient c++

b is zero, and consider the row of the matrix A0 containing g++

b . This row
contains at most the three matrices g+

b−2, g−

b−4, g−−

b−6. By the expression (3.7), in each of these matrices the top row
vanishes on p0. So A0 cannot have maximal rank. �

Lemma 3.7. Let A be defined by (3.9), and let J : W ∗
→ W be the equivariant duality defined by the matrix

J =


J2a+1 0

0 J2a−3 0

0
. . . 0
0 J1

 ,

where each Jb is defined by (3.8). Then the equation

AJ A>
= 0
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is equivalent to the following system of equations:(
2a−2

3

)
(

2a+1
3

) (c++

2a+1)
2
+

2a − 4
2a − 3

(c−

2a−3)
2

= (c−−

2a−5)
2, (3.11)

9
2a − 2(

2a+1
2

) (c++

2a+1)
2

= 2(c−

2a−3)
2, (3.12)

9
5
(c++

5 )2 −
2
3
(c+

3 )
2

= 2(c−

1 )
2, (3.13)

and, for each s = 1, . . . , a/2 − 2,(
2a−2−4s

3

)
(

2a+1−4s
3

) (c++

2a+1−4s)
2
−

(
2a−3−4s

2

)
(

2a−1−4s
2

) (c+

2a−1−4s)
2
+

2a − 4 − 4s
2a − 3 − 4s

(c−

2a−3−4s)
2

= (c−−

2a−5−4s)
2, (3.14)

9
2a − 2 − 4s(

2a+1−4s
2

) (c++

2a+1−4s)
2
− 2

2a − 5 − 4s
2a − 1 − 4s

(c+

2a−1−4s)
2

= −2(c−

2a−3−4s)
2, (3.15)

and, for each t = 1, . . . , a/2 − 1,

c+

2a−1−4t c
−−

2a−1−4t =
2a − 2 − 4t
2a + 1 − 4t

c++

2a+1−4t c
−

2a+1−4t . (3.16)

Proof. The map AJ A> is an SL(2)-equivariant skew-symmetric matrix with quadratic entries, which we can identify
with an invariant element of ∧

2(∧2 Ua)⊗ (U6 ⊕ U2).
By decomposing I into SL(2)-irreducible summands we obtain a block decomposition of this matrix, i.e. we write

AJ A>
= (Bi, j ), where the block Bi, j represents the map

Bi, j : U2a−2−4i → U2a−2−4 j ⊗ OP3(2),

which is induced by AJ A>.
Clearly, the only nonzero blocks sit along the three central diagonals. Moreover, since the map AJ A> is skew-

symmetric, we need not impose conditions on the blocks sitting above the main diagonal, as soon as the remaining
blocks vanish.

Now, a block sitting on the main diagonal corresponds to the induced map Ub → Ub ⊗ OP3(2). For b ≥ 4, this
block vanishes as soon as the coefficients of x2

3 and x2
2 are zero; indeed these monomials generate U6 ⊕ U2 as an

sl(2)-module. Making use of the expressions (3.6)–(3.8), one derives by a direct computation the conditions (3.11),
(3.12), (3.14) and (3.15). These amount to a − 2 equations. On the other hand, for b = 2 we need only impose that
the coefficient of x2

2 be zero. This gives Eq. (3.13).
The blocks sitting on the diagonal below the main one correspond to maps Ub → Ub−4 ⊗ OP3(2). Notice that

here we only have to take care of the coefficient of x2
3 . By a direct computation, this gives the condition (3.16), which

amounts to a/2 − 1 equations. �

Theorem 3.8. For each integer a ≥ 2, there exists an SL(2)-instanton bundle E on P(U3) with c2(E ) =
( a

2

)
. The

matrix A : W → I (1) representing E is unique up to the action of Sp(W )× SL(I ).

Proof. According to the parity of a, we have to check that there exists a matrix of the form (3.9) or (3.10) having
everywhere maximal rank, and satisfying AJ A>

= 0. We work out the case (3.9), the other one being similar.
Consider now the matrix A. It has a/2 rows and a columns, and it depends only on the 2a − 2 coefficients of the

form cεb. In view of Lemma 3.6, we assume c++

2a+1−4s 6= 0, for each s = 0, . . . , a/2 − 1. Imposing nonzero values on
these coefficients, we are left with (3a)/2−2 variables. On the other hand Lemma 3.7 gives (3a)/2−2 homogeneous
quadratic equations. So there exists a solution and we find the matrix A.
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To prove uniqueness, we look more carefully at our set of equations. Fix first the a/2 nonzero coefficients of the
form c++

2a+1−4s . Observe that the Eqs. (3.11) and (3.12) determine c−

2a−3 and c−−

2a−5 up to the choice of some sign.
Then (3.16) for t = 1 gives a unique value for c+

2a−5. Now (3.15) and (3.14) for s = 1 give c−

2a−7 and c−−

2a−9 up to
some sign. Then again we use (3.16), (3.15) and (3.14) until we are left with (3.16) for t = a/2 − 1. After that we use
(3.13) to settle c−

1 up to sign. So the only choice for A is the choice of the c++

2a+1−4s’s and of the sign in the solutions
of the system of equation of Lemma 3.7.

Now making use of the SL(I )-action via diagonal matrices, we may multiply the rows of A by any nonzero scalar.
Recall that the remaining coefficients depend linearly on the c++

2a+1−4s’s besides the choice of signs, so we may assume
that the c++

2a+1−4s’s are all equal to 1.
Finally we use the Sp(W )-action. We make use of diagonal transformations consisting of blocks of +1’s and −1’s,

each of the size of some Jb : Ub → Ub in the SL(2)-decomposition of W . These transformations allow us to change
the sign in the columns of A, so we may indifferently pick any sign in the choice of the solution of (3.11)–(3.15), as
long as the ratio

c−

2a+1−4t c
++

2a+1−4t

c−−

2a−1−4t c
+

2a−1−4t

remains unchanged for t = 1, . . . , a/2 − 1. But the Eq. (3.16) prescribes that this be equal to 2a+1−4t
2a−1−4t . �

3.3. The resolution an SL(2)-instanton bundle on P(U3)

Here we provide another, much simpler way to define the instanton bundle E described above. Let b ≤ 1 be an
integer, and set hb = f −

b .

Lemma 3.9. For b ≥ 1, the sheaf coker(hb) is locally free of rank 2 if and only if b is divisible by 3.

Proof. Consider the points p1 = (0 : 1 : 1 : 0), p0 = (1 : 0 : 0 : 0) in P(U3). Notice that p1 sits in P(U3) \ Y4 while
p0 sits in Γ .

We can depict the matrix hb as follows:

hb =



−x2 α
(b)
1,2x3 0

−2x1 α
(b)
2,2x2 α

(b)
2,3x3 0

x0 α
(b)
3,2x1 α

(b)
3,3x2 α

(b)
3,4x3 0

0
. . .

. . .
. . .

. . .
. . .

0 α
(b)
1,2x0 −x1


.

The first two rows of hb vanish at p0, so clearly the map hb has corank 2 at p0 for each b if the coefficient α(b)j+2, j
is nonzero for each b. This is indeed the case for we have

α
(b)
j+2, j =

b + 1 − j
b

.

Now consider the matrix Hb obtained by evaluating hb at p1. In view of Lemma 3.1, we have to check that Hb has
corank 2 if and only if b is divisible by 3. This holds true if we check that all the coefficients α(b)j+1, j multiplying x1
in hb are nonzero, except one of them when b is divisible by 3. Making use of (3.7), an easy computation leads to the
formula

α
(b)
j+1, j =

3
(

b−1
j−2

)
− 2

(
b

j−1

)
(

b
j−1

) .

So we have

α
(b)
j+1, j = 0 ⇐⇒

{
b = 3d;

j = 2d + 1.
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Our claim is thus proved. �

Lemma 3.10. Let d ≥ 1 and set E = coker(h3d)(−d). Then E is stable with c1(E ) = 0 and c2(E ) =

(
d+1

2

)
. We

have an equivariant exact sequence:

0 → O(−2d − 1) → U3d ⊗ OP3(−d − 1) → U3d+1 ⊗ OP3(−d) → E → 0, (3.17)

where each map is the unique (up to scalar) equivariant morphism between the given source and target.

Proof. By the previous lemma, ker h3d is a line bundle. So let ker h3d = OP3(−`). Since the map OP3(−`) →

U3d ⊗ OP3(−d − 1) is equivariant, there must be an invariant element in HomP3(OP3(−`),U3d ⊗ OP3(−d − 1)) ∼=

Sym`−d−1U3 ⊗ U3d . This implies ` ≥ 2d + 1.
On the other hand, consider the unique (up to scalar) equivariant map kd : OP3(−2d − 1) → U3d ⊗ OP3(−d − 1).

The composition h3d ◦ kd is again equivariant. But the representation HomP3(OP3(−2d − 1),U3d+1 ⊗ OP3(−d)) is
isomorphic to Symd+1U3 ⊗ U3d+1, which contains no invariant element; hence we get h3d ◦ kd = 0. Then the line
bundle OP3(−2d − 1) sits in ker h3d , so ` ≤ 2d + 1.

This gives the exact sequence (3.17). It follows that c1(E ) = 0 and c2(E ) =

(
d+1

2

)
. Since E has no global

sections, it is stable by Hoppe’s criterion. �

The following proposition is due to Giorgio Ottaviani.

Proposition 3.11. For any d ≥ 1 the natural composition

Symd−1(U3)⊗ U3d → Symd−1(U3)⊗ Symd(U3) → Sym2d−1(U3)

is surjective.

Proof. By Hermite reciprocity we reduce to prove the surjectivity of the natural map:

Sym3(Ud−1)⊗ U3d
φ

−→ Sym3(U2d−1).

Choose now a monomial order such that y < x. Once we have fixed an integer b, we use the notation yn = xb−nyn

for a basis of Ub. Note that we have an induced order on the basis of Ub, that is yb < yb−1 < · · · < y0.
A basis of Sym3(Ub) is given by the symmetric product yb−n3 yb−n2 yb−n1 . where n1 ≥ n2 ≥ n3. We consider the

lexicographic order on the basis of Sym3(Ub); that is

yb−n3 yb−n2 yb−n1 < yb−m3 yb−m2 yb−m1

if the first nonzero entry in (m1 − n1,m2 − n2,m3 − n3) is positive. Hence we have

y3
b < · · · < y2

0 y1 < y3
0 .

Note that, under the embedding: U3b ↪→ Sym3(Ub), the image of the our basis can be written as follows:

y3
b < yb−1 y2

b < yb−2 y2
b + y2

b−1 yb < · · · < y2
0 y2 + y0 y2

1 < y2
0 y1 < y3

0 .

Here we may assume without loss of generality that the coefficients are all equal to one. Note that yb−2 y2
b is the

leading term of yb−2 y2
b + y2

b−1 yb.
Set now b = 2d − 1 and consider the space Sym3(U2d−1). We have thus yn = x2d−1−nyn . Define also the basis

elements of Ud−1 and U3d as follows:

un = xd−1−nyn, vn = x3d−nyn .

We claim that every basis element

Bn1,n2,n3 := y2d−n3 y2d−n2 y2d−n1 ,

with n1 ≥ n2 ≥ n3, belongs to the image of φ. We prove this claim by induction on the order just defined. There are
four cases to be considered.
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(i) If n1 ≤ d − 1, then we have

Bn1,n2,n3 = φ
(
ud−1−n3 ud−1−n2 ud−1−n1 ⊗ v3d

)
,

where the subcase ni = 0 is the starting point of the inductive argument.
(ii) If n2 ≤ d − 1 ≤ d ≤ n1, then the image

φ(u0ud−1−n3 ud−1−n2 ⊗ v4d−1−n1 + · · · )

equals Bn1,n2,n3 plus lower terms which belong to the image of φ by the inductive assumption. It follows that in
this case Bn1,n2,n3 belongs to the image of φ.

(iii) If n3 ≤ d − 1 ≤ d ≤ n2, then

φ(u2d−n2−1u2d−n1−1ud−1 ⊗ vd−n3 + · · · ),

is equal to Bn1,n2,n3 plus lower terms which again lie in the image of φ by induction. Thus Bn1,n2,n3 sits in Im(φ).
(iv) Finally, in the case of a ≤ n3, we obtain

Bn1,n2,n3 = φ(u2d−1−n3 u2d−1−n2 u2d−1−n1 ⊗ v0). �

Corollary 3.12. For d ≥ 1, the bundle E on P(U3) defined by the exact sequence (3.17) is an instanton bundle.

Proof. By the Lemmas 3.9 and 3.10, it suffices to show that H1(P3,E (−2)) = 0. We get the equality

H1(P3,E (−2)) = ker(H3(P3,OP3(−2d − 3)) → H3(P3,U3d ⊗ OP3(−d − 3))).

By Serre duality this gives

H1(P3,E (−2))∗ = coker(H0(P3,U3d ⊗ OP3(d − 1))
φ′

−→ H0(P3,OP3(2d − 1))).

The map φ′ identifies with φ of the previous proposition; hence we are done. �

Remark 3.13. In the cases a = 2, 3, the SL(2)-homogeneous instanton bundle of the previous corollary was first
constructed by P. Katsylo and G. Ottaviani during the preparation of [11] by computational tools. L. Gruson observed
that the case a = 2 has a different interpretation in terms of nets of quadrics as in [7]. It corresponds to the net of
quadrics containing a twisted cubic.

Remark 3.14. Set k =

(
d+1

2

)
. For a = 1, 2, changing the maps in Eq. (3.17), we obtain the minimal graded free

resolution of a general k-instanton. For higher d this is no longer true, for the general k-instanton has no sections at
the twist d; see [9].

For d ≤ 6 (that is, for k ≤ 21) a proof of smoothness of MI(k) at an instanton bundle E given by Theorem 3.8 can be
achieved by making use of Macaulay2 [6]. Namely, for d ≤ 6 we write down the matrix h3d and set E = coker(h3d).
Then the Macaulay2 computation, performed over a finite field, gives H2(P3,E ⊗ E ) = 0. This implies our claim.
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